DP-100 Dumps

DP-100 Free Practice Test

Microsoft DP-100: Designing and Implementing a Data Science Solution on Azure

QUESTION 71

- (Exam Topic 3)
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You are creating a model to predict the price of a student’s artwork depending on the following variables: the student’s length of education, degree type, and art form.
You start by creating a linear regression model. You need to evaluate the linear regression model.
Solution: Use the following metrics: Mean Absolute Error, Root Mean Absolute Error, Relative Absolute Error, Relative Squared Error, and the Coefficient of Determination.
Does the solution meet the goal?

Correct Answer: A
The following metrics are reported for evaluating regression models. When you compare models, they are ranked by the metric you select for evaluation.
Mean absolute error (MAE) measures how close the predictions are to the actual outcomes; thus, a lower score is better.
Root mean squared error (RMSE) creates a single value that summarizes the error in the model. By squaring the difference, the metric disregards the difference between over-prediction and under-prediction.
Relative absolute error (RAE) is the relative absolute difference between expected and actual values; relative because the mean difference is divided by the arithmetic mean.
Relative squared error (RSE) similarly normalizes the total squared error of the predicted values by dividing by the total squared error of the actual values.
Mean Zero One Error (MZOE) indicates whether the prediction was correct or not. In other words: ZeroOneLoss(x,y) = 1 when x!=y; otherwise 0.
Coefficient of determination, often referred to as R2, represents the predictive power of the model as a value between 0 and 1. Zero means the model is random (explains nothing); 1 means there is a perfect fit. However, caution should be used in interpreting R2 values, as low values can be entirely normal and high values can be suspect.
AUC.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/evaluate-model

QUESTION 72

- (Exam Topic 3)
You are using C-Support Vector classification to do a multi-class classification with an unbalanced training dataset. The C-Support Vector classification using Python code shown below:
< ><>>>< >
Solution:
Box 1: Automatically adjust weights inversely proportional to class frequencies in the input data
The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).
Box 2: Penalty parameter
Parameter: C : float, optional (default=1.0)
Penalty parameter C of the error term. References:
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Does this meet the goal?

Correct Answer: A

QUESTION 73

- (Exam Topic 3)
You are analyzing the asymmetry in a statistical distribution.
The following image contains two density curves that show the probability distribution of two datasets.
< ><>>>< >
Solution:
Box 1: Positive skew
Positive skew values means the distribution is skewed to the right. Box 2: Negative skew
Negative skewness values mean the distribution is skewed to the left. References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/compute-elementary-statistic

Does this meet the goal?

Correct Answer: A

QUESTION 74

- (Exam Topic 3)
You have a dataset contains 2,000 rows. You arc building a machine learning classification model by using Azure Machine Learning Studio. You add a Partition and Sample module to the experiment.
You need to configure the module. You must meet the following requirements:
• Divide the data into subsets.
• Assign the rows into folds using a round-robin method.
• Allow rows in the dataset to be reused.
How should you configure the module? To answer select the appropriate Options m the dialog box in the answer area.
NOTE: Each correct selection is worth one point.
< ><>< >
Solution:


Does this meet the goal?

Correct Answer: A

QUESTION 75

- (Exam Topic 1)
You need to define a modeling strategy for ad response.
Which three actions should you perform in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.

Solution:
Step 1: Implement a K-Means Clustering model
Step 2: Use the cluster as a feature in a Decision jungle model.
Decision jungles are non-parametric models, which can represent non-linear decision boundaries. Step 3: Use the raw score as a feature in a Score Matchbox Recommender model
The goal of creating a recommendation system is to recommend one or more "items" to "users" of the system. Examples of an item could be a movie, restaurant, book, or song. A user could be a person, group of persons, or other entity with item preferences.
Scenario:
Ad response rated declined.
Ad response models must be trained at the beginning of each event and applied during the sporting event. Market segmentation models must optimize for similar ad response history.
Ad response models must support non-linear boundaries of features. References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/multiclass-decision-jungle https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/score-matchbox-recommende

Does this meet the goal?

Correct Answer: A