A financial company hosts a data lake in Amazon S3 and a data warehouse on an Amazon Redshift cluster. The company uses Amazon QuickSight to build dashboards and wants to secure access from its on-premises Active Directory to Amazon QuickSight.
How should the data be secured?
Correct Answer:
A
https://docs.aws.amazon.com/quicksight/latest/user/directory-integration.html
A streaming application is reading data from Amazon Kinesis Data Streams and immediately writing the data to an Amazon S3 bucket every 10 seconds. The application is reading data from hundreds of shards. The batch interval cannot be changed due to a separate requirement. The data is being accessed by Amazon Athena. Users are seeing degradation in query performance as time progresses.
Which action can help improve query performance?
Correct Answer:
A
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
A university intends to use Amazon Kinesis Data Firehose to collect JSON-formatted batches of water quality readings in Amazon S3. The readings are from 50 sensors scattered across a local lake. Students will query the stored data using Amazon Athena to observe changes in a captured metric over time, such as water temperature or acidity. Interest has grown in the study, prompting the university to reconsider how data will be stored.
Which data format and partitioning choices will MOST significantly reduce costs? (Choose two.)
Correct Answer:
CD
A company leverages Amazon Athena for ad-hoc queries against data stored in Amazon S3. The company wants to implement additional controls to separate query execution and query history among users, teams, or applications running in the same AWS account to comply with internal security policies.
Which solution meets these requirements?
Correct Answer:
B
https://docs.aws.amazon.com/athena/latest/ug/user-created-workgroups.html
Amazon Athena Workgroups - A new resource type that can be used to separate query execution and query history between Users, Teams, or Applications running under the same AWS account https://aws.amazon.com/about-aws/whats-new/2019/02/athena_workgroups/
A company has developed several AWS Glue jobs to validate and transform its data from Amazon S3 and load it into Amazon RDS for MySQL in batches once every day. The ETL jobs read the S3 data using a DynamicFrame. Currently, the ETL developers are experiencing challenges in processing only the incremental data on every run, as the AWS Glue job processes all the S3 input data on each run.
Which approach would allow the developers to solve the issue with minimal coding effort?
Correct Answer:
B